15<sup>th</sup> Topical Conference on RF Power in Plasmas May 20 –22, 2003 Jackson Hole, Wyoming

# Waves and Instabilities in Dusty Plasmas

Bob Merlino University of Iowa

# Outline

- What is a dusty plasma?
- Where are dusty plasmas?
- Charging of dust particles
- Waves in dusty plasmas

#### **Dusty Plasmas**

- Dust represents much of the solid matter in the universe and this component often coexists with the ionized matter forming a <u>dusty plasma</u>.
- Dust is often present in laboratory plasmas as well either by choice or circumstance.

What is a dusty plasma? plasma = electrons + ions

small particle of solid matter

- absorbs electrons and ions
- becomes negatively charged
- Debye shielding



#### Importance of Charged Dust

The dust acquires an electrical charge and thus is subject to electromagnetic as well as gravitational forces

The charged dust particles participate in the collective plasma processes

# **DUSTY PLASMAS**

#### <u>Natural</u>

- 1. Solar nebula
- 2. planetary rings
- 3. interstellar medium
- 4. comet tails
- 5. noctilucent clouds
- 6. Lightning
- 7. snow

1. Microelectronic processing

Man-made

- 2. rocket exhaust
- 3. flames
- 4. fusion devices
- 5. H bomb



#### Rosette Nebula

Our solar system accumulated out of a dense cloud of gas and dust, forming everything that is now part of our world.

# A flame is a very weakly ionized plasma that contains soot particles.



An early temperature measurement in a dusty plasma.

## **Comet Hale-Bopp**



# Spokes in Saturn's B Ring



Voyager 2 Nov. 1980

Cassini-Huygens July 2004

#### Semiconductor Processing System



silane  $(SiH_4) + Ar + O_2 \rightarrow SiO_2$  particles

#### Semiconductor Manufacturing







Physics Today August 1994



## **Dust Charging Processes**

( + )

- electron and ion collection
- secondary emission
- UV induced photoelectron emission



#### The Charge on a Dust Grain

In typical lab plasmas  $I_{sec} = I_{pe} = 0$ 

Electron thermal speed >> ion thermal speed so the grains charge to a negative potential  $V_s$  relative to the plasma, until the condition  $I_e = I_i$  is achieved.

$$I_{e} = en_{e}\sqrt{\frac{kT_{e}}{m_{e}}} \exp\left(\frac{eV_{S}}{kT_{e}}\right) \pi a^{2} \text{ repulsion}$$

$$I_{i} = en_{i}\sqrt{\frac{kT_{i}}{m_{i}}} \left(1 - \frac{eV_{S}}{kT_{i}}\right) \pi a^{2} \qquad Q = (4\pi\varepsilon_{o}a) V_{S}$$
ion enhancement

#### **Typical Lab Plasma**

• For T<sub>e</sub> =  $T_i$  = T in a hydrogen plasma

 $V_{\rm S} = -2.5 \, ({\rm kT/e})$ 

• If  $T \approx 1$  eV and  $a = 1 \mu m$ ,

 $Q \approx -2000 e$ 

• Mass:  $m \approx 5 \times 10^{12} m_p$ 

#### **Dust Charge Measurements**

Walch, Horanyi, & Robertson, Phys. Rev. Lett. 75, 838 (1995)





#### Waves in dusty plasmas

- electrostatic dust ion-cyclotron waves (EDIC)
- dust ion acoustic waves (DIA)
- dust ion acoustic shocks (DIAS)
- dust acoustic waves (DA)
- Dust cyclotron mode
- Strongly coupled dusty plasmas

#### Effect of dust on plasma waves

- the presence of dust modifies the characteristics of the usual plasma modes, even at frequencies where the dust does not participate in the wave motion
- the dust provides an immobile charge neutralizing background

$$n_i = n_e + Z_d n_d$$

#### **Dust Modes**

- new, low frequency (~ few Hz) modes in which the dust grains participate in the wave motion appear in the dispersion relations
- the dust dynamics can be observed visually since the dust motion can be imaged and recorded on tape

#### Quasineutrality in dusty plasmas

• For low frequency waves the condition  $n_i = n_e + Z_d n_d$ holds in both zero and first order

• defining:  $\varepsilon = n_{do} / n_{io}$  we characterize the

dusty plasma using the quantity  $\mathcal{E}Z_d$ 

which is the fraction of negative charge on

the dust grains

# Fluid theory of Low frequency electrostatic waves in dusty plasmas

Three component plasma: electrons, ions, negative dust

$$I. \quad \frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} v_{\alpha}) = 0$$

$$II. \quad n_{\alpha} m_{\alpha} \frac{\partial v_{\alpha}}{\partial t} + n_{\alpha} m_{\alpha} (v_{\alpha} \cdot \nabla) v_{\alpha} + q_{\alpha} n_{\alpha} \nabla \varphi$$

$$- q_{\alpha} n_{\alpha} (\vec{v}_{\alpha} \times \vec{B}) = 0$$

$$III. \quad n_{i} = n_{e} + Z_{d} n_{d}$$

#### **New Phenomena in Dusty Plasmas**

- Unlike ordinary plasma, or plasmas containing negative ions, the *charge on a dust grain is not constant*, but fluctuates with the local plasma potential.
- This leads to new damping effects and new mechanisms for wave growth.

#### Fluid theory: mode frequencies

- for ion and electron modes we treat the dust as an immobile negative background
- for dust modes we can neglect the electron and ion inertia terms
- For excitation conditions (growth rates, critical drifts, etc.) we must use kinetic theory

#### **Dust Ion Acoustic Mode**

- DIA: ion-acoustic wave modified by dust
- Dispersion relation:

$$v_p = \frac{\omega}{K_{\parallel}} = \left[\frac{kT_i}{m_i} + \frac{kT_e}{m_i\left(1 - \varepsilon Z_d\right)}\right]^{\frac{1}{2}}$$

 $=C_{DIA}$ 



# **DIA – Kinetic Theory**

Dust acoustic waves are normally heavily Landau damped in a plasma with  $T_e = T_i$ . However the presence of negatively charged dust can drastically reduce the damping.



#### **Dust Ion Acoustic Wave Experiment**



#### **DIA - Conclusion**

- Ion acoustic waves which would otherwise not propagate in a plasma with  $T_e = T_i$  can propagate in a plasma with a sufficient amount of negatively charged dust.
- In the presence of negative dust, the wave phase velocity increases, decreasing the effect of ion Landau damping.

#### **Experimental setup**



#### **DIA Shocks – results**



#### **DIA Shocks – results**



# **EDIC: fluid theory**

- Electrostatic ion-cyclotron waves excited by electron current along the magnetic field
- Propagate at large angle to B

$$\omega^2 = \Omega_{ci}^2 + K_{\perp}^2 \left( \frac{kT_i}{m_i} + \frac{kT_e}{m_i(1 - \varepsilon Z_d)} \right)$$
$$= \Omega_{ci}^2 + K_{\perp}^2 C_{DIA}^2$$

#### Electrostatic dust ion-cycloton instability (EDIC)





#### **EDIC- kinetic theory results**

- EIC instability driven by current along B
- As more negative charge is carried by the dust, the critical drift needed to excite the instability decreases
- the instability is easier to excite in a dusty plasma



V. W. Chow & M. Rosenberg, Planet. Space Sci. 44, 465 (1996)



Combining the dust momentum equation with the plasma equations we see that (for the case of cold dust,  $T_d = 0$ ).

$$m_d n_d \frac{\partial v_d}{\partial x} = -\frac{\partial}{\partial x} (p_e + p_+)$$

where  $p_e + p_+$  is the total pressure due to electrons and ions.

In the dust acoustic wave the inertial is provided by the massive dust particles and the electrons and ions provide the restoring force

#### **DA** Dispersion relation

Monochromatic plane wave solutions for  $T_e = T_i = T$ 



#### **DUST IN A GLOW DISCHARGE**



# **Dust Acoustic Wave Image**



# **Dust Acoustic Wave Dispersion Relation**



#### Electrostatic dust cyclotron mode

- EDIC involves cyclotron motion of the dust – magnetized dust
- Dispersion relation:

$$\omega^{2} = \Omega_{cd}^{2} + K_{\perp}^{2} \left[ \frac{kT_{d}}{m_{d}} + \varepsilon Z_{d}^{2} \frac{1}{1 + (T_{i} / T_{e})(1 - \varepsilon Z_{d})} \right]$$
$$= \Omega_{cd}^{2} + K_{\perp}^{2} C_{DA}^{2}$$

#### Gyroradius of dust particles

$$r_d = \frac{m_d v_d}{e Z_d B}$$

$$m_d \propto a^3, \ Z_d \propto a, \ v_d = \sqrt{\frac{kT_d}{m_d}}$$

$$r_d \propto a^2$$

#### Gyroradius of dust particles



#### Solid state dusty plasmas

In a typical plasma

$$\Gamma = \frac{e^2 Z^2 / 4\pi \varepsilon_o d}{kT_d} << 1$$

- In a dusty plasma the interaction energy is multiplied by  $Z_d^2$  which can be very large, so that  $\Gamma > 1$  is possible
- The dust grains may then arrange themselves in a regular lattice.

#### Coulomb Crystal John Goree – Univ. Iowa



# Waves in strongly coupled dusty plasmas

- The presence of short scale correlations gives rise to novel modifications of the collective behavior
- Both compressional and transverse shear waves are possible

#### **Compressional and shear waves**



# Summary/Conclusions

- Dusty plasmas are not uncommon in the lab and are ubiquitous in the Universe
- Presence of dust modifies both the excitation and propagation of plasma waves
- New, very low frequency dust modes
- Collective fluctuations in dusty plasmas may provide mechanism for structuring