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Abstract
A second-order perturbation theory for non-dispersive, undamped dust acoustic waves is
presented. The analysis leads to a second-order wave equation with source terms consisting of
(nonlinear) products of first-order terms. The nonlinear effects included in this analysis might
be useful in explaining the non-sinusoidal waveforms that are observed with large-amplitude,
self-excited dust acoustic waves.

PACS numbers: 52.27.Lw, 52.35.Mw, 43.25.+y

Dust acoustic waves are low-frequency, longitudinal dust
density waves that propagate through a fluid of charged
dust particles suspended in a plasma. The linear theory
(first-order perturbations) of small-amplitude dust acoustic
waves, including dispersive effects, was first derived by Rao,
Shukla and Yu (RSY) [1]. For finite-amplitude waves, RSY
derived a generalized Boussinesq equation of third order, and
showed that under certain conditions, this equation reduced
to a generalized Korteweg–de Vries (KdV) equation, which
they solved using the standard reductive perturbation method
that admitted localized solutions. The above-mentioned
pioneering paper of RSY has motivated a considerable amount
of further work on nonlinear dust acoustic waves and, in
particular, dust acoustic solitary waves (see, e.g., [2]).

This paper presents a very simplified second-order wave
theory, with the motivation for capturing the basic physics
of finite-amplitude dust acoustic waves. The emphasis here
will focus on the minimum physics necessary to interpret
the non-sinusoidal dust acoustic waveforms that are typically
observed in experiments (see, e.g., [3]). We adopt the simplest
fluid description with the following assumptions: (i) the
dusty plasma is uniform and homogeneous; (ii) the dust
is treated as a cold fluid, Td = 0; (iii) the dust charge is
constant; (iv) charge neutrality is assumed; (v) there are
no dissipation mechanisms present; and (vi) the waves are
planar (one-dimensional). Under these conditions, the system
is described by the (nonlinear) continuity and momentum
equations
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where nd is the dust density, ud is the dust fluid velocity,
eZd = Qd is the dust charge (taken to be negative), md is
the dust mass and ϕ is the electric potential. Since the phase
speed of the dust acoustic wave is well below the electron and
ion thermal speeds, the electrons and ions are taken to be in
Boltzmann equilibrium,

ne = ne0 exp(eϕ/kTe), (2a)

ni = ni0 exp(−eϕ/kTi), (2b)

where ne(i) is the electron (ion) density, and Te(i) is the
electron (ion) temperature. The model is completed by taking
∂2ϕ/∂x2

= 0, which amounts to neglecting dispersive effects,
and implies the neutrality condition

ni = ne + Zdnd, (3)

which, in the zero-order state, reads ni0 = ne0 + Zdnd0.
Let ψ represent any of the variables (ne, ni, nd, ud, ϕ),

and expand ψ in a perturbation series with a small parameter
ε as ψ = ψ0 + εψ1 + ε2ψ2, with ud0 = 0, and ϕ0 = 0. The
Boltzmann relations (equation (2)) are expanded to second
order in ϕ and when combined with the neutrality condition
allows us to write the first- and second-order wave potentials
in terms of the first- and second-order dust densities as

ϕ1 = −A1nd1, (4a)

ϕ2 = A2n2
d1 − A1nd2, (4b)
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,

j = (i, e) , α = ne0/ni0,
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and τ = Ti/Te. Equations (1a) and (1b) are expanded to
second order in ε2 and terms having like powers of ε are
equated to provide the first- and second-order continuity
equations
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and the first- and second-order momentum equations
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Equation (4b) is used in (6b) to express ϕ2 in terms of nd1

and nd2 in equation (6b). To obtain an equation for nd2, ud2

must be eliminated in (5b) and (6b) by taking ∂/∂t on (5b)
and ∂/∂x on (6b) and equating the mixed partial derivatives
of ud2. Collecting the second-order terms on one side of the
equation and first-order terms on the other side, we obtain the
following second-order wave equation for nd2:
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where

Cda = λDωpd, ωpd =

√
e2 Z2

dnd0/εomd.

Equation (7) can be simplified since the solutions to the
first-order equations are assumed to be known, i.e.

{nd1, ud1} = {ñd1, ũd1} exp[i(kx −ωt)],

where the quantities with tildes are the amplitudes, and k
and ω are the wavenumber and angular wave frequency,
respectively. Then from (5a) we have ud1 = (ω/k)(nd1/nd0),
so that (7) can be written as
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where
A = A2/A1 −ω2/
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and
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)
.

Equation (8) is the second-order equation for dust
acoustic waves, which is similar in form to the second-order
equation for sound waves [4], in which the first-order terms
on the rhs appear as source terms for the second-order wave
equation. The source terms on the rhs of (8) are products of
the (known) first-order terms, and thus give rise to second
harmonic terms exp [2i(kx −ωt)] in the inhomogeneous wave
equation. It is clear that carrying out the perturbation analysis
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Figure 1. Non-sinusoidal (asymmetric) waveforms obtained from
second-order dust acoustic wave theory (equation (8)) for t = 0,
ϑ = −1.33, k = 1 m−1, ñd1 = 1, with (a) ñd2 = 0.10, (b) ñd2 = 0.29
and (c) ñd2 = 0.61.

to second order not only leads to quantitative corrections
to the first-order quantities, but also adds qualitatively new
effects that are not contained in a linear wave analysis.
Dropping the expansion parameter ε, the dust density to
second order can be written as nd = nd0 + nd1 + nd2, or the
excess dust density as 1nd ≡ nd − nd0 = nd1 + nd2. Since the
second-order term involves the second harmonics, the wave
solution for 1nd(x, t) can then be written to second order as

1nd(x, t)= ñd1 cos(kx −ωt +ϑ)+ ñd2 cos[2(kx −ωt +ϑ)],
(9)

where ñd1 and ñd2 are the first- and second-order amplitudes
and ϑ is an arbitrary phase factor. Figure 1 shows a plot of (8)
for t = 0, ϑ = −1.33, k = 1 m−1 and ñd1 = 1, for three values
of ñd2, (a) 0.10, (b) 0.29 and (c) 0.61. Even the relatively
small second-order term in case (a) produces a non-symmetric
waveform. The effect of the second-order term for case (b) is
to make the wave crests sharper and the wave troughs flatter.
Such waveforms are typically observed in laboratory dusty
plasma experiments for self-excited dust acoustic waves [3].
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