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Abstract. Drift wave instability in a magnetized plasma composed of positive ions
and negative ions is considered using linear kinetic theory in the local approximation.
We consider the case where the mass (temperature) of the negative ions is much
larger (smaller) than that of the positive ions, and where the gyroradii of the two ion
species are comparable. Weak collisional effects are taken into account. Application
to possible laboratory parameters is discussed.

1. Introduction

Recently, Kim and Merlino (2007) have shown that it is
possible to generate an almost electron-free plasma (elec-
tron to ion density ratio <10−4) in a thermal plasma us-
ing the electron-attaching gas of perfluorocarbon C7F14.
The presence of the negative C7F14 ions, which have a
mass of 350 times the proton mass mp, was determined
by observing the fundamental electrostatic ion cyclotron
(EIC) mode near the gyrofrequency of the negative ion
along with its higher harmonics. The excitation of the
modes was due to an electron current that was drawn
along the magnetic field B (Kim and Merlino 2007). In
addition to the negative ion EIC modes, positive ion
EIC modes were also excited by the parallel electron
current (Kim and Merlino 2007; see also Kim et al.
2008).

In the presence of ion density gradients perpendicular
to B, and even in the absence of a parallel electron
current, one might expect that a drift wave instability
could occur driven by the free energy associated with
the pressure gradient in the plasma. In this paper, we
consider conditions for the excitation of drift waves
via a universal type instability in an almost electron-
free plasma composed of light positive ions and heavy
negative ions, immersed in an external magnetic field.
The motivation for the study is the recent report by
Kim et al. (2012) on experimental observations of waves
with frequency much lower than any gyrofrequency or
plasma frequency in a plasma composed of positive
and negative ions with scarce electrons (electron density
∼10−3 negative ion density).

We consider a parameter regime where the gyroradii
of the positive and negative ions are comparable. This
can occur when the temperature of the light positive
ion species is larger than that of the heavy negative
ion species by a factor on the order of the ratio of
the heavy to light ion masses. We neglect the effect of
possible E × B drifts, due, for example, to the presence
of an ambipolar electric field E, since this field would be

expected to be small in this case owing to comparable
diffusion rates of the two ion species.

There has been prior theoretical work on drift wave
instabilities in plasmas containing negative ions or
massive negatively charged dust grains (e.g. Shukla et al.
1991; Rosenberg and Krall 1996; Shukla and Rosenberg
2009; Saleem 2010; Knist et al. 2011). However, the only
theory that we have found for a negative ion plasma with
vanishingly small electron concentration appears to be
for a pair-ion plasma in which there is no mass difference
between the ion species (e.g., Saleem 2010). The effect of
negative ions on the drift wave instability in a pair-ion
electron plasma was found to be stabilizing, where the
instability was found to be quenched in the limit of a
pure pair-ion plasma with no electrons (Ali and Saleem
2010; Saleem 2010).

Section 2 gives the model, dispersion relation and
some approximate analytic results. Section 3 gives nu-
merical results for possible laboratory plasma paramet-
ers. Section 4 gives a brief summary and discussion.

2. Analysis
We consider a weakly ionized plasma composed of
singly charged positive ions and singly charged negative
ions. (Because we assume that the electron number
density is orders of magnitude smaller than that of the
positive ions, we neglect the electrons). The condition of
equilibrium charge neutrality is then

n+ ≈ n−, (1)

where n is the number density and the subscripts +,−
refer to positive ions and negative ions, respectively. It is
assumed that the mass of the negative ions, m−, is much
larger than that of the positive ions, m+. We consider
a slab geometry, with an external uniform magnetic
field B in the z direction, and with the ion densities
decreasing in the x direction. The density gradient scale
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length L−1
n = |∇n/n| is the same for both ion species.

Thus, the diamagnetic drift velocity of the positive ions,

v∗
+ = −T+

eB

∇n+

n+
× z, (2)

is in the −y direction, while that of the negative ions is
in the +y direction, with v∗

− = −(T−/T+)v∗
+. Thus, the

diamagnetic drift frequency ω∗
j = k · v∗

j is taken to be
> 0 for a wave with ky in the −y direction. We con-
sider the frequency regime where ω � the negative ion
gyrofrequency ωc−, assume that the ions are described
by Maxwellian velocity distributions, and retain colli-
sions using a number-conserving Krook collision term
(see e.g. Miyamoto 1989). In the local approximation,
the dispersion relation for electrostatic waves is (e.g.
Lindgren et al. 1976; Alexandrov et al. 1984; Miyamoto
1989):

1 +
∑
j=+,−

χj = 0, (3)

where

χj =
1

k2λ2
Dj

[
1 +

(
1 −

ω∗
j

ω + iνj

)
Γ0(bj)ζjZ(ζj)

]

×
[
1 +

iνj

ω + iνj
Γ0(bj)ζjZ(ζj)

]−1

. (4)

Here, λDj = (Tj/4πnje
2)1/2, bj = k2

yρ
2
j , where ρj = vj/ωcj

is the gyroradius, vj is the thermal speed, ωcj is the
gyrofrequency and νj is the collision frequency of ion
species j. In addition, Γ0(x) = I0(x)e−x with I0 as the
modified Bessel function of order zero, and Z(ζ) is the
plasma dispersion function (Fried and Conte 1961) with
argument ζj = (ω + iνj)/

√
2kzvj .

We give an approximate analytic limit of (3) in the
kinetic regime for the positive ions where ζ+� 1 and
the non-resonant regime for the negative ions where
ζ−�1. Note that these regimes can occur simultaneously
under conditions where v−/v+� 1. However, for the
parameters that will be considered in the next sec-
tion, where v−/v+ ∼ 0.1, this analytic limit is only
marginally satisfied. Thus, we will retain higher or-
der terms in the expansions of the plasma dispersion
function than are usually considered for the universal
drift wave instability. Furthermore, in order to obtain
tractable analytic expressions, we will neglect collisional
effects which are relatively small in the regime where
ν+, ν−�ω.

We also assume that ω = ωr + iγ with ωr � |γ|.
For the positive ions, expanding the plasma dispersion
function into real and imaginary parts as Z(ζ+) ∼
Zr(ζ+) + i

√
πe−ζ2

+ (see Miyamoto 1989), the positive ion
susceptibility becomes approximately

χ+∼ 1

k2λ2
D+

[
1+

(ω − ω∗
+)

kzv+
Γ0(b+)

(
− ω

kzv+
+i

√
π

2
e−ζ2

+

)]
.

(5)

In contrast to the usual treatment of the universal
instability in a standard electron–ion plasma (see e.g.
Goldston and Rutherford 1995), in our case we cannot
assume that the real part of Z(ζ+) can be neglected.
This is because, although ζ+ is < 1, it is not necessarily
� 1 when ζ− � 1. For the negative ion susceptibility,
we expand the plasma dispersion function for large
argument, so that

χ− ≈ 1

k2λ2
D−

[
1 − (ω − ω∗

−)

ω
D− + iF−

]
, (6)

where

D− = Γ0(b−)

(
1 +

1

2ζ2
−

)
,

and

F− =

√
π

2

(ω − ω∗
−)

kzv−
Γ0(b−)e−ζ2

− .

We then use (5) and (6) in (3) along with ω∗
− =

−(T−/T+)ω∗
+ to obtain the following approximate ex-

pression for the real part of the frequency:

ωr ≈ ω∗
+ D−

1 + C+ + T+

T−
(1 − D−)

, (7)

where

C+ = Γ0(b+)
(ω∗

+ − ωr)ωr

k2
z v

2
+

.

To obtain (7) we have also assumed that k2λ2
D+� (T+/

T−)(1−D−). In the limit of a small negative ion Larmor
radius, with b−� 1, (7) becomes

ωr ≈ ω∗
+(1 − b−)

1 + C+ + k2
yρ

2
s − k2

z c
2
s /ω

2
, (8)

where ρs = (T+/T−)1/2ρ− and cs = (T+/m−)1/2 is the
sound speed in the system. Note that (8) is similar
to the dispersion relation for the real frequency in
the usual universal instability analysis for a standard
electron–ion plasma, with the exception of the term C+

(see Ichimaru 1973; Goldston and Rutherford 1995).
In this model plasma, the (light) positive ions take the
place of the electrons and the (heavy) negative ions
take the place of the ions, so the electron diamagnetic
frequency is replaced by ω∗

+, the electron temperature
and the Larmor radius are replaced by T+ and ρ+,
respectively, and the ion temperature and the Larmor
radius are replaced by T− and ρ−, respectively. As in
the standard electron–ion plasma, the real frequency
tends to increase as kz increases (see e.g. Goldston and
Rutherford 1995). However, there is an additional factor
C+ in the denominator of (8) that reduces the real
frequency for ω < ω∗

+. In addition, in contrast to the
electron–ion plasma where the perpendicular wavelength
of the drift wave is much larger than the electron Larmor
radius, in this case, where ρ+ ∼ ρ−, the perpendicular
wavelength could be comparable to ρ+.
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The growth rate of this drift instability for ζ+� 1 and
ζ−� 1 is obtained as

γ ≈
√

π

2

ω2
r

ω∗
+D−

[(
ω∗

+ − ω

kzv+

)
Γ0(b+)e−ζ2

+

− T+

T−

(
ω − ω∗

−
kzv−

)
Γ0(b−)e−ζ2

−

]
. (9)

From (9) it can be seen that growth requires ω <

ω∗
+. Note that (9) has the same form as the growth

rate for the collisionless drift wave instability in a
standard electron–ion plasma (e.g. Ichimaru 1973), with
the replacements electron → positive ion, and ion →
negative ion discussed above.

3. Numerical results
In this section, we show solutions of (3) for the following
set of possible experimental parameters: B = 0.3 T,
n+ = 1 × 109 cm−3 = n−, T+ = 0.2 eV, T− = 0.026
eV, m+/mp = 39, m−/mp = 350. With these parameters,
the ion gyrofrequencies are ωc+ ∼ 7.3 × 105 rad s−1

and ωc− ∼ 8.2 × 104 rad s−1. The ion gyroradii are
comparable, with ρ+ ∼ 0.95 mm and ρ− ∼ 1 mm. (This
implies that both ion species may diffuse across the
magnetic field with comparable rates, in which case one
might expect that any ambipolar field that might be
set up would be relatively small.) Note that with these
parameters, the ratio v+/v− ∼ 8.3, so that the analytic
result in the previous section is only marginally valid,
and a numerical solution is needed. The gas pressure is
assumed to be very low, on the order of ∼ 10−5 Torr, so
that collisions with neutrals can be neglected. However,
Coulomb collisions between positive and negative ions
may play a role. Using expressions from Huba (2011)
and Deutsch and Rauchle (1992), we obtain ν+ ∼ 1.4 ×
103 s−1, assuming that the K+ ions are fast test ions
colliding with the negative ions, and ν− ∼ 110 s−1,
assuming the negative ions are slow test ions colliding
with the K+ ions. We consider ion density gradients
of magnitude Ln ∼ 2 cm. Thus, ρ+/Ln ∼ 0.047 (and
ρ−/Ln ∼ 0.05).

The real frequency and growth rate (normalized to
ωc−) of this drift wave instability are shown in Fig. 1
for the above parameters. Results are shown for several
values of the angle θ between k (with the y component
in the direction of the positive ion diamagnetic drift
velocity) and B. Note that the frequency increases as
θ decreases, that is, as kz increases, following the trend
of the analytic results. For these parameters, growth

appears to occur for kρ− ∼ kρ+
<∼ 1. Maximum growth

occurs around kρs ∼ 1, where ρ2
s = (T+/T−)ρ2

−, analog-
ous to maximum growth of the universal instability in
a standard electron–ion plasma (Angus and Krashenin-
nikov 2012). The growth rate decreases as k increases
owing to several factors including the decrease of Γ0(b)
with increasing k and the increase in collisionless damp-
ing by the negative ions as ω/kzv− becomes smaller and

(a)

(b)

c
c

r

Figure 1. (a) Frequency ωr and (b) growth rate γ normalized
to ωc− versus kρ− obtained by solving (3). Parameters are:
m+/mp = 39, m−/mp = 350, T+/T− = 7.7, ν+/ωc− = 0.017,
ν−/ωc− = 1.3 × 10−3, ωp+/ωc+ = 9, ρ+/Ln = 0.047, θ = 89◦

(dot–dashed curves), θ = 88◦ (dashed curves), θ = 87◦ (solid
curves).

c
c

r

(a)

(b)

Figure 2. Frequency ωr (a) and growth rate γ (b) normalized
to ωc− versus kρ− obtained by solving (3). Parameters are the
same as in Fig. 1, except that ρ+/Ln = 0.094.

as the frequency approaches kzcs. Figure 2 shows the
frequency and growth rate for a smaller gradient scale
length of Ln ∼ 1 cm, with the other parameters being the
same as above. As expected, the growth rate increases
as Ln decreases.

Although this simple analysis shows the possibility of
wave growth, note, however, that kLn is not � 1 and the
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local approximation used here may not apply very well.
For example, for the parameters used, when kρ− ∼ 0.5,
we have that kLn ∼ 10 for Fig. 1 and ∼5 for Fig. 2.
Thus, future work should consider a non-local analysis
to analyze the problem more rigorously.

4. Summary and discussion
A universal-type drift wave instability in a plasma com-
posed of positive ions and negative ions was considered
using a linear kinetic theory analysis in the local approx-
imation. The positive ions have a much smaller mass and
much higher temperature than the negative ions so that
the universal instability limit could occur, with kinetic
positive ions and non-resonant negative ions. A plasma
with low collisionality was considered. Numerical results
were presented for possible laboratory parameters.

This analysis was motivated by recently reported
experimental observations of waves with frequencies
much lower than the gyrofrequency of negative ions in a
magnetized Q-machine plasma composed of potassium
ions and negative ions of the perfluorocarbon C7F14,
with an electron density of ∼10−3n− (Kim et al. 2012).
Although the instability considered in this paper is in
this frequency regime for the considered parameters,
further work is needed to determine its relevance to
the experimental results reported by Kim et al. (2012).
Future theoretical work should consider a non-local
analysis (e.g. Chen 1967; Davidson 1976), preferably
in a cylindrical geometry appropriate for a Q-machine.
It may be that effects of E × B and centrifugal drifts
may also need to be considered if there is a radial
electric field E (see e.g. Chu et al. 1969; Politzer 1971).
In order for the magnitude of the E × B drift speed
to be comparable to the positive ion diamagnetic drift
speed for the parameters considered in Sec. 3 above,
the electric field strength should be about 10–20 V
m−1. However, for the parameters considered in Sec. 3,
one might expect any ambipolar field to be relatively
weak, since the mobilities of the ion species across
the magnetic field appear to be comparable. That is,
the perpendicular mobility (see Krall and Trivelpiece
1973) μ⊥α ∝ να/(mαω

2
cα) ∝ mανα for ωcα � να, so that

μ⊥−/μ⊥+ ∼ 1 for the considered parameters.
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